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We prove a structure theorem for evolution equations in the state space of a 
discrete classical system fulfilling a class of H theorems. These H theorems are 
proved to give strong implications on the time behavior of the solutions. All the 
results are demonstrated by examples (Boltzmann-like equations, for example). 
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1. I N T R O D U C T I O N  

The dissipative time development  of a phYSical system is often indicated by 
the mono tone  behavior  of certain state functionals. The most  famous 
example is the Bol tzmann equat ion with Bol tzmann 's  H theorem. (6~ 

In the following we consider classical systems with finitely many  (pure) 
states i ( i - - 1  . . . . .  n). A (mixed) state is an n-dimensional  probabil i ty 
vector p, i.e., p = (Pl, �9 �9 �9 ,Pn) with Pi >/0 for all i and Z n = l f l i  = l. 

The set of all probabil i ty vectors (or states) will be called the state 
space Pn. The interior of the state space is formed by the strictly positive 
states (i.e., all components  of such a state p are posit ive--briefly,  p > 0). All 
remaining states belong to the boundary .  

We describe the time development  by a trajectory in the state space Pn. 
This means that we have a map,  which determines a state p(t) for every 
instant of time t >/0 [p(0) will be called the initial state]. As a special case 
we have that the time development  is given by a system of ordinary 
differential equations. Differential equations will be called evolution equa- 
tions in the state space Pn or P~-invariant evolution equations, when every 
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solution which starts with initial value from the state space Pn can be 
extended to all times t > 0 and never leave the state space pn. 

Important examples of evolution equations in the state space are 
Pauli's master equation (~4~ and the Boltzmann-like equations (B equations). 
The latter are equations of the following structure: 

( d / d t ) p  i = ~ ( A i j k l l ) k ] g l  - -  AklijPiPj), i = 1 . . . . .  n (1) 
j , k , l=  1 

with the conditions for the scheme of the A~ j s  

Aijkt = A j i k l  = AO~k >1 O, for all i, j ,  k, l (2) 
n 

Aokt = 1, for all k, l (3) 
i , j= 1 

Every solution of a B equation with initial value p(0) ~ Pn can be extended 
to a global solution defined for all times t (0 < t < m) and never leave the 
state space Pn .(l) 

Already Boltzmann (7) studied equations of such a type as discrete 
version of his spatially homogeneous equation. The coarse-grained descrip- 
tion with the pi's and Asjk/'s originates, for instance, from integration of the 
distribution function and the interaction kernel, respectively, over the 
corresponding cells in the velocity space. We interpret Agk t as transition 
probability per unit time of a pair of particles from cells k, l to be scattered 
into cells i, j .  

Then, following BoltzmannS ) the discrete version of the H functional 
is 

H(p) = 2 p/log Pi 
i = 1  

Let us now consider the structure of H(p). One notices that 

H(p) = ~ ( 1 / n ) g ( p i / ( 1 / n ) )  - logn 
i=1 

when g(s)  represents the convex function slogs. This functional will be 
generalized in various aspects: 

Definition 1.l (relative H functionals). Let g be an arbitrary convex 
function (defined on R+ ) and p, q be states. Then we define 

Sg(p; q ) : =  ~ qig(Pi /qi )  
i = 1  

Remark .  By specializing the reference state as q = ( 1 / n  . . . . .  1 /n )  
and in choosing g(s)  -- s logs, we arrive at H again (up to a constant). 
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Now we formulate relative H theorems. 

Def in i t ion  1.2 (relative H theorems). We say that the q-relative H 
theorems are fulfilled for a trajectory (p(t))t>~0 in the state space Pn if and 
only if for any convex function g 

Sg(p(t);q) < Sg(p(t ') ;q) when t/> t', q ~ P~ 

With respect to this definition we may now raise the following ques- 
tion: Under what conditions are the q-relative H theorems fulfilled for 
every state solution of a B equation? Examples and conditions where this 
fact happens to be true have been provided only very recently. (1'1~ 

In the case of the master equation corresponding results have been 
well known for a long time. (19'16A7) 

Remark 1. The relative H theorems are valid also for a continuous 
model of the full Boltzmann equation-- the Carleman model. (18) 

Remark 2. The H theorems imply (more precisely: are equivalent to) 
the monotone behavior for  all convex functionals over p,.(5) Particularly, 
this applies to the a entropies and so we get their monotone behavior. Some 
authors (~3) investigate this special class of functionals for B equations. 

The aim of our investigation is more general: we characterize those 
Pn-invariant evolution equations the state solution of which fulfil the 
relative H theorems. Then, as we shall prove, this fact gives strong implica- 
tions as to the behavior of the solutions in the large scale (asymptotic 
behavior, etc.). 

Some notions (e.g., stochastic matrix, stochastic generator) are ex- 
plained in the Appendix. 

2. EVOLUTION EQUATIONS IN THE STATE SPACE AND 
RELATIVE H THEOREMS: A STRUCTURE THEOREM 

We suppose that the system of ordinary differential equations 

(d/dt)p = v(p) (4) 

is an evolution equation in the state space Pn. For simplicity we suppose 
further that the vector field v : R n ~ p__> v(p) E R n is continuously differen- 
tiable. 

Now we raise the following question: Which structure has the vector 
field v(p) for p ~ Pn, when all solutions of (4) which start in Pn (and for an 
evolution equation in the state space also remain there) obey the q-relative 
H theorems for a strictly positve state q? 
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Roughly speaking, the following theorem says, that for such P,- 
invariant evolution equations (4) fulfilling the q-relative H theorems the 
vector field v(p) for p E P, is almost everywhere given by a state-dependent 
stochastic generator L(p): 

v ( p ) = L ( p ) p  and L ( p ) q = O  

It is useful to remember (see also the Appendix) that an equation (d/dt)p 
= Lp with a (constant) stochastic generator L is a master equation, i.e., a 
special evolution equation in the state space P, which fulfils the q-relative 
H theorems for all state solutions with respect to a stationary state q (i.e., 
Lq = 0). 

Theorem 2.1. Suppose v is a vector field of an evolution equation in 
the state space In. All solutions of this equation which start in the state 
space P. fulfil the q-relative H theorems (q > 0) if and 0nly if there exists 
an open, dense subset S of Pn and a map L : S ~ p ~ L(p) from S into the 
real n • n matrices with the properties: 

(i) L(p) is a stochastic generator (5) 

(ii) L(p)q = 0 (6) 

(iii) v(p) = L(p)p for all p E S 

For the proof we need some more technical results. 

L e m m a  2.1. Suppose L is a stochastic generator on Rn with Lq = 0 
and q > 0. Then, for every convex, differentiable function f on R+ we have 

(Lp)jf '(pj/q;) < 0 for all p ~ Pn (7) 
j= l  

where f '  indicates the derivative of f. 

Proof. A differentiable f (at x = 0 differentiable from the right) on 
R+ is convex iff 

( t -  s)f '( t)  >1 f( t )  - f ( s )  for all t,s ~ R+ (8) 

We may be content with showing (7) for L with [Lik [ ~ 1 for all i,k (for 
2~ > 0, ~,L is a stochastic generator, too). Then there is a stochastic matrix B 
such that 

L = - 1  + B, Bq = q (9) 

where 1 denotes the matrix (6i~). We define ci~ = qi IBi~q~ for all i,k, and 



Nonlinear Evolution Equations and H Theorems 135 

we get 

cik >>- 0 Vi,  k; ~_s % =  1 

~ qiCik = qk Vk 
i=1 

Now our conclusions run along the following line: 

Lijpjf'(Pi/ qi) i,j= I 

= ~ q~(c~(pj/qj)- 6~j(pj/q/)}f'(pJqi) 
i,j= 1 

=   (PJ/qJ) - ( p , / q ,  , p , / q , )  
j~l 

~ ~ Nil ~ j = l  

< ~ qjf(pj/qj)- ~, q,f(pJq,)=O [] 
j = l  i=1 

Vi (10) 

(11) 

[by (8) andpi />  0] 

[by  convexity and (10)] 

[ b y ( l l ) ]  

Lemma 2.2. Let {L (m) } be a sequence of stochastic generators over 
R ' .  Assume L(m)q = 0 for all m (q > 0), and suppose p >/0 is given such 
that X = 0h . . . .  , X,) with )tj = pj/qj is a nondegenerated vector, i.e., X i r Xj 
Vi=/=j. Then SUpm[[L(m)p[ [ < o e  implies supmHL('~ < 0 %  where ]['r[ 
means an appropriate norm in the Euclidean R"  

Proof. For convenience we may assume Xl > X2 > ' ' "  > X, > 0. 
We define n • n matrices A (m) _- (Ai(km)) by A,(~ ) -- L}~)qk, and we obtain 

n n 
A/(~ ) >/0 Vi v a k, ~,  A/(~ )= 0 Vk, ~ A/(k m)= 0 Vi 

i=1 k = l  

(12) 
L(m)p = A(m)~ for all m (13) 

We are going to show that if 

sup [Aj~m) I < oo for j / >  k 
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then 

sup]A~.m)[ < ~c, j >/ k - 1 (14) 
m 

In fact, in assuming sup~,lA~")l < ce , j  ~> k, we obtain from (12) 

suplA~:~)l< ~ ,  suplA:<:")l< ~ ,  j />  k, Vs (15) 
m m 

From (12) we know A (m) of (13) we k- lk-1 = - - ~ j ~ k -  A('~) k - ~ j '  so by means 
get 

(L('~)P)k_I= ~ A(k m-), j ( ~ J  - -  ~Xk-1) + E A~ ~), j (X j -  kz-_,) (16) 
j < k - 1  j > k - I  

Owing to (12), (15), and positivity of Xj -  Xk_ 1 f o r j  < k -  1, the second 
part of the right-hand side of (16) is uniformly bounded, whereas the first 
part is nonnegative. But then, owing to supm[(L(m)p) k_ 1[ < c~ also the first 
part of the right-hand side of (16) remains bounded. Once more inserting 

_ _ sup,,]A k_ ~ j[ positivity of Xj X k_ ~ for j < k 1 we may conclude that (m) 

< o e  for j < k - 1 .  From (12) and sup,~[A~("2_) 19[<oe for j > k - 1  it 
follows that s , , "  IA(m) I < oe, SO the implication (14) is seen to be true. "~Vmt k - l k - l l  
Now, (L(")p). (m) = ~ j< .A . j  (Xj - h.), and ?,j - X. > 0 for j < n. This, to- 
gether with supm[[L(m)p[ { < oo and (12) implies sup,.IA,(,~)[ < oc,j  < n, and 
once more again making use of (12) we obtain sup,~lA~(~) I < o~. In applying 
implication (14) successively (starting with k -- n in (14)) we then arrive at 
sup,~lAff~)[ < oc Vj, from which the result supm[A)km)[ < ~ Vj, k follows by 
means of (12). By definition of A this is equivalent with supm[L)km)[ < oc 
Vj, k. �9 

Lemma 2.3. Let p', p", q be probability vectors, q > 0. If 

Sf(p'; q) ~< Sf(p"; q) 
holds for any continuous, convex f on R +,  there exists a stochastic n • n 
matrix T with 

T p " = p '  and Tq---q 

Moreover, if there is a stochastic matrix T such that Tq = q and Tp" = p', 
then 

Sf(p'; q) ~< Sf(p"; q) 

is satisfied for any convex f on R + .  

Proof. The first part of our assertion is far from being trivial. 
Therefore, we omit a proof and refer in this respect to Refs. 3, 5, and 15. To 
see Sf(Tp"; q) < ST(P"; q) for any convex f on R+,  we define A = (Aik) by 
Aik = qkT~kqi -l .  Then, p'/q~ = ( T p " ) J q  i -- ~,~=lA~k(pf~'/qk), and if we 
make use of Aik >1 O, ~,~= iAik = 1 (this being a consequence of Tq - q), 
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stochasticity of T and convexity of f, the following conclusion is an obvious 
one: 

Su( TP"" ) ' " , q = q P i  i = k k 
i = 1  1 

qi A i J ( P k / q k  = Pk/q~) 
k = l  k = l  i 

= ~ qkf(P/~/q~)= ST(P"; q). 
k = l  

This proves the second part of Lemma 2.3. [] 
Let us now come to the proof of our theorem. 

Proof of  Theorem 2.1. Assume there is some open, dense set 
S c P,,  and there exists a map acting from S into n • n matrices with 
properties (i)-(iii) from the theorem. Let 0 < t---> p(t) be a solution of (4) 
with p(0) E P,,. Fix t o i> 0. For every continuous differentiable convex f we 
have 

(d/dt)Sf(p(t);  q)],=,0 = ~ vi(p(to))f'(pi(to)/qi) (17) 
i=l 

Suppose (p(m)) C S with limmp (m) = p(t0). Then, as a consequence of (17) 
we get 

(d/dt)Sf(p(t);  q) t=to = 2im~ (d/dt)Sf(p(m)(t); q) t=0 (18) 

where 0 < t--~p(m)(t) means the solution of (4) with initial value p(m)(o) 
= p(m). Since p(m) E S, it follows from property (iii) that v(p (m)) = L(p (m)) 
p(m). Inserting this into (18) and applying Lemma 2 . l i t h e  use of which is 
justified by (5), (6)--we arrive at 

n 

(d/dt)Sf(p(t);q)lt=to = m-,~lim ~.=1 (L(p(m))p(m))Jf'(PJ(m)/q]) < 0 

The latter has to hold for any t o i> 0 and for every p(O)E Pn, with f 
arbitrary chosen from the continuously differentiable, convex functions. 
Hence 

Sf(p(t); q) < Sf(p(s); q) for all t/> s/> 0 (19) 

for all p(0) ~ Pn, and any continuously differentiable convex f. Since any 
continuous, convex f can be uniformly approximated by continuously 
differentiable, convex functions on every finite interval, the inequality (19) 
persists to hold for continuous, convex functions on R + .  Finally (by 
Lemma 2.3), we see that (19) extends to all convex functions on R + .  Thus, 
sufficiency is proven. 
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Now we prove the other direction. 
Let a set S be defined by 

S = (x ~ P, : (xj/qj)  =/=(xk/qk), j ~ k)  

This set S is (relatively) open and dense within P, .  Fix p E S, but arbitrary. 
We consider the solution 0 < t ~ p ( t )  of (4) for p(0) = p. Let (t in) be a 
strictly decreasing sequence of nonnegative reals, with limmt m = 0. Then, 
Sf(P(tm); q) ~< Sf(p; q) for all m and for any convex f on R+ .  According to 
Lemma 2.3, we find stochastic matrices B (m) such that 

p(tm) = B(m)p ,  B(m)q = q, for all m. 

H e n c e  tm l (p ( t~ )  -- p) = t m l ( B  (m) -- 1)p = L('~)p, where  L (m) :=  
tml(B (m) - 1 )  is a stochastic generator with L(m)q= 0. Since tm~O, we 
have 

v(p) = (d/dt)pl ,= o = lim L(m)p. 
m ~ o G  

This is only possible if SUpmllL(m)pl I < oo. 
Since p E S, Lemma 2.2 becomes applicable, hence SUPmllL (m) IJ ~ o0. 

Therefore, we find a convergent subsequence (L(m~)), L(mj ) ~ L(p). Obvi- 
ously L(p)q - 0, and L(p) is a stochastic generator with v(p) = L(p)p. Since 
p ~ S was arbitrarily chosen, necessity is proven. �9 

3. RELATIVE H THEOREMS: THE ASYMPTOTIC BEHAVIOR 
OF TRAJECTORIES 

Let 0 < t---> p(t) E Pn be a continuous trajectory in the state space (at 
t = 0 continuous from the right). We write briefly (p(t))t~>0. Now, let q E Pn 
be a fixed, strictly positive vector (q > 0). 

Then, we say (Definition 2.1) that the q-relative H theorems are 
fulfilled for the trajectory (p(t))~>0, when Sg(p(t); q) < Sg(p(s); q) for any 
convex function g defined on R + and for all t >/s >/0. 

The main result of this section will be to show that trajectories in the 
state space satisfying q relative H theorems behave very regularly for 
t --> o0. 

Theorem 3.1. Let (p(t))t~>o be a trajectory in the state space satisfy- 
ing the q-relative H theorems (q > 0). Then (i) p~ = limt_,~p(t) exists; and 
(ii) p(0) > 0 implies p(t) > 0 for all t >t 0 and p~ > 0 (strict positivity!). 

Proof. We show (i). Let f2(p) be the o~-limit set of (p(t)),> 0, i.e., 

~ ( p )  ----- ( p '  E R n :  t I < t 2 < " ' "  ' m-~lim t m = oo, ,,~o~lim p(tm). . = p ' }  

Since P, is compact, and (p(t))t>~o c P, ,  we may refer to a basic result from 
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topological dynamics (11) which applies to our situation with the result 

f](p) is a nonvoid, compact, and connected subset of Pn. (20) 

Now, we show (with special relative H functionals) that ~(p) can only be a 
one-point set. 

Let fl > 0 be a real. We define a continuous, convex function f by 

f~(x )  -- (1 /2 ) (x  - fi + Ix - / 3 [ )  for all x ~ R+ 

The corresponding SI functional reads as 

SfB(p(t);q ) = II(p(t) - /3q)+rl ,  V/3 >/0, Vt/> 0 (21) 

where a+ for a E R n is defined by a+ = ~aj>~oaj, and Itall~ means 2 '=,lajl, 
the L ~ norm of the vector a. 

By the assumption of Theorem 3.1, for any p'  ~ f~(p) we have 

lim Sf, (p(t); q) = Sf~ (p'; q) (22) 
t ---) oo  # 

In fact S~(p; q) depends continuously on p; hence 

lira St (p(t,,,); q) = Sji ~ (p'; q), for p' E a(p), 
m - ~ o c  JB 

lira p(tm) = p', limmtm= 

since Sfe(n(t); q) decreases in time, (22) follows. 
Taking into account (21), with regard to (22) we may draw the 

following conclusion: 

Vp',p" Ca(p ) :  II(P'-/3q)+lll  = II(P"-/3q)+lll  Vfi > 0  (23) 

Let us define G ( f l ) : =  l l (P '- /3q)+ Irl, P ' ~  fa(p). Then, G(/3) is monoto- 
nously decreasing for/3 increasing. One also easily verifies that G(/3) is a 
piecewise linear function, with at most n corners, say, m, at /31 . . . . .  /3m 
> 0. Suppose p', p" E fa(p). Obviously we may decompose { 1 . . . . .  n ) into 
m mutually disjoint, nonvoid subsets K/ (Kf', respectively), j = 1 , . . . ,  m, 
such that 

P'i =/3sqi for all i ~ Ks', Pj" =/3sqj for all j E K,(' (24) 

and s < m. 
If we now think of p' as being fixed for the moment, we obtain from 

(24) that 

p}' = (p'/q~)qj = (qj/qs)pf for any j ~ Ks", i E Ks', Vs (25) 

has to hold for every p" and the corresponding decomposition (K~")s<m. 
Now, there are only finitely many possibilities for decomposing the set 

(1 . . . . .  n} into m disjoint, nonvoid subsets. Hence, there is only a finite 
number of p" which can obey equations (25). Thus fa(p) has finitely many 
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elements. This is consistent with (20) if and only if ~2(p) is a one-point set: 
~2(p) = (p~}. The relation limt_,oop(t ) = p~, i.e., (i) follows then since we 
are working in a compact set P, .  

We show (ii). Assuming ql ~ qj <~ qn for all j ,  and defining Pi := Pi(0) 
>/e > 0 for all i, we are claiming that pi(t) >i (ql/q,)E for all i and for all 
t > 0. In order to see (26) we suppose--in contradiction with (26)--that an 
index i and an instant t > 0 exist such that ps(t) < (q~/q,)~. Then, it is easy 
to construct a nonnegative, convex, and monotonously decreasing, continu- 
ous function f on R+ such that 

f ( c /q , )  = 1, f (p i ( t ) /q l )  = (2/q~) (27) 

For such f we would have 

Sf(p(t); q) = ~] qjf(pj(t)/qj) (positivity o f f )  
J 

>t q~f(pi(t)/qi) >1 q~f(pi(t)/q,) [by (27)] 

>> 2(q,/q,) >1 2 > 1 = f ( e /q , )  
i.e., 

s:(p(t); q) > 

On the other hand, one may conclude also as follows: 

ST(P; q) = ~] qyf(pj/qj) (monotonicity off ,  qj ~< q,) 
J 

< ~] qjf(pj/q,)  (monotonicity off ,  pj >/ e) 

<~ ~ qjf(~/q,) = f ( c /q , )  
J 

i.e., 

(28) 

S/(p(0); q ) =  S/(p; q) ~ f ( e /q , )  (29) 

Now, f is a convex function, and (p(t))~>0 satisfies the q-relative H 
theorems; hence 

Sf(p(t); q) ~< S/(p(0); q) <~ f (~ /q , )  [by means of (29)] 

This contradicts (28), so our supposition cannot be true. This proves (26). 
By (i) we then have 

P~i := lira pi(t) >1 (ql/q,)e 
l ---> OO 

i.e., Poo is strictly positive. �9 
Up to now (in this section) we have been talking only about trajecto- 

ries in the state space. Now, we investigate the case that we have an 
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evolution equation in the state space (4) all solutions of which obey the 
q-relative H theorems. From Theorem 3.1 then follows: 

Proposition 3.1. Suppose we have an evolution equation in the state 
space (4) all solutions of which (starting in the state space) obey the 
q-relative H theorems (q > 0). Then (i) every solution with p(0)E Pn 
converges towards a stationary state. 

(ii) Every solution with strictly positive initial state does not intersect 
the boundary of Pn at any time (especially: the asymptotic stationary state 
is strictly positive). 

(iii) q is also a stationary state, and if q is the only strictly positive 
stationary state of (4), every solution of (4) with strictly positive initial state 
approaches q as t goes to infinity. 

Proof. From Theorem 3.1 we know that all state solutions converge 
and do not intersect the boundary of Pn, when they start in the interior 
of In. 

We show that the asymptotic states are stationary states. Suppose for a 
moment vi(p~) > 0 for an index i. By continuity of v, there is a 6 > 0, and 
t(6) > 0, such that vi(p(t))/> 6 for all t >/ t(8), hence (d/dt)pi(t) >>. 6 > 0 
for all t/> t(6) contradicting the fact that pi(t) has to be bounded with 
respect to t. Therefore, vi(p~ ) ~< 0 for all i. If vi(p~) < 0 for some i, we 
conclude P~i < 0 (with similar arguments as above), a contradiction to 
positivity preservation of (4). Hence, v (p~)=  0 has to hold, i.e., p~ is a 
stationary state. 

Now to (iii). That q is a stationary state of (4) follows if we look on the 
behavior of Sf(q(t); q) with convex f (s)= Is - 1[, where 0 ~ t---~q(t) is the 
solution of (4) with q(0)= q. Indeed, for such f, Sf(q(t);q)= Hq(t)-  ql[1 
and Sf(q(t); q)~< Sf(q; q ) =  0 then implies q ( t ) = q  for all t~> 0. Hence, 
q~ = q. The rest of the assertion is evident. �9 

Because of stability properties the reference state q plays an exposed 
role among all stationary states. 

Proposition 3.2. Suppose we have an evolution equation in the state 
space (4) all solutions of which (starting in Pn) obey the q-relative H 
theorems (q > 0). Assume there exist only finitely many strictly positive 
stationary state of this equation. Then, q is asymptotically stable and the 
only stable stationary state in Pn. 

Remark. Of course, we define the notions "stable" and "asymp- 
totically stable" only in restriction to the state space P~. 

Further, it is useful to compare our Proposition 3.2 with the method of 
Lyapunov functionals in stability theory. 
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Proof. Take the convex function f(s)= ( s -  1) 2. Then, Sf(p;q) 
= ~iqi-l(])i- qi) 2. Define M as the set of stationary states of (4) (in Pn) 
which are different from q. Since q is not a limit point of M, we have 
c = lnfq,~MSf(q, q) > 0. Let U be given as U = (p ~ P, Sf(p; q) < c}. U is 
a neighborhood of q in Pn. Assume p ~ U, and l i m , . = p ( t ) =  p~ (cf. 
Proposition 3.1)--where p(t) is the solution of (4) for p(0) = p. Then, p~ is a 
stationary state, and 

Sf(p=;q) < Sf(p(0);q) < c, i.e., p~ ~ M 

Hence p= = q. 
If [I " 112 denotes the L 2 norm in R", we see 

(mya.xqj)-*lip - qll~ < Sf(p; q) < (min qj)-~llp - q]122 

Therefore, Sf(p(t); q) < Sf(p(0); q) for all t ~> 0 implies lip(t) - qll2 < 8 for 
all t/> 0 whenever 

t ip (0)  - ql[2 < ~( 
/ 

mimq, / mjaxqj ) t 

Thus, q is an asymptotic stable state. 
Let q' E M, and suppose 0 < 0 < 1, pO = (1 - v~)q ' § 0q. For suffi- 

ciently small 0 we have 

pO~(bounda ryo fPn) ,  p ~  and [IpO-q ' i l2=0t lq-q ' ]12 (30) 

Since SI(X; q) is convex in X ~ Pn, we have 

Sf(pO; q) < (1 - O)Sf(q'; q) + OSf(q; q) = (1 - O)Sf(q'; q) + 0 

< Sf(q'; q) =/= 0 

If 0 < t-->p~ is the solution of (4) for p~ pO the just-derived esti- 
mate and Proposition 3.1 result in the following: If limt~p~ = p~, then 
A)(p~ < Sf(q';q). Hence, pO=/=q'. Owing to Proposition 3.1 pO~ 
(boundary of Pn) implies p~ ~ (boundary of P~), and we may conclude that 
(M':= M U (q}) 

lim [IpO(t) - q'l[a > 
t--> 

inf 
ql =/_ q2 

ql E M'\(boundary Pn) 
q2EM' 

I[q l -  q2112 = m > 0 

holds for any v ~ ~ (0, 1) which is sufficiently small. At the same time, 
limo~0LIP ~  q'l[2 = 0 by (30). Thus q' cannot be stable, i.e., q is the only 
stable state of (4) in Pn. �9 
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4. A CLASS OF VECTOR FIELDS 

Up to now, we always supposed that we had an evolution equation in 
the state space P, .  Then we obtained further results about asymptotic 
behavior, etc., when the relative H theorems are fulfilled. 

Now, we specify a class of vector fields. It will be shown that these 
vector fields--which we call vector fields of class (E)--automatical ly  give 
evolution equations in the state space. 

Definition 4.1 [vector fields of class (E)]. v is a vector fields of class 
(E)  if v(p) = L(p)p for p E R" and L : p---> L(p) is a continuously differen- 
tiable map from R" into the real n • n matrices fulfilling (i) ~,iL(p)i~ = 0 
for all k, p E R n(!); and (ii) L(p) is a stochastic generator whenever p ~ Pn. 

Romark. If p---> L'(p) is a continuously differentiable map from P~ 
into the n X n-stochastic generators one can always extend this map L' to 
L : p  ~ L(p) over R" with property (i) (with a reflection method). 

Later we prove the following: 

Proposition 4.1. Every vector field of class (E)  gives an evolution 
equation in the state space. 

With help of Proposition 4. l, the structure Theorem 2.1 (take S = P,) 
and the Propositions 3.1 and 3.2 we get the following. 

Theorem 4.1. Let v be a vector fields of class (E)  which fulfils the 
additional condition L(p)q = 0 for q > 0 and p E P~. 

Then, we obtain an evolution equation in the state space. Every 
solution which starts from a state p E P, is a trajectory that satisfies the 
q-relative H theorems. Every such solution converges in Pn toward a 
stationary state. A solution, arising from an inner point, does not intersect 
the boundary of Pn at any time and approaches an inner stationary point of 
the equation. 

q itself is a stationary state, and if v (x)=  0 has only finitely many, 
strictly positive solutions in Pn, q is asymptotically stable and the only 
stable stationary state in P, .  

Now we come to the proof of Proposition 4.1. Firstly, we formulate the 
following 

Lemma 4.1. Let t--~ L(t) be a continuous map from R+ into the 
n x n-stochastic generators. For t,s ~ R + ,  t/> s, let a matrix T(t,s) be 
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defined as 

T ( t , s ) = l +  ~ f s tL ( s l ) f sS 'L ( s2 ) . . ,  f sSm- lL(sm)ds l . . .ds  m 
m = l  

where s o = t. 
Then, T(t,s)  is a stochastic n • n matrix. 

We shall not give a detailed proof of this useful fact, merely indicate 
the essential steps of the argumentations showing the validity of the 
assertion. 

Firstly, one shows validity of an "inhomogeneous" Lie formula 

T ( t , s ) =  lim ( l + ( ( t - s ) / N ) L ( n u ) ) - . .  ( l + ( ( t - s ) / N ) L ( n l ) )  
N---~ ~ 

• (1 + ((t - s ) / N ) L ( s ) )  (*) 

where n k := s + k ( ( t -  s / N ) ,  k = 1 . . . . .  N. 
We remark that such type of formula holds true also in much more 

general situations [e.g., for strongly continuous families (L(t)) of bounded 
linear operators on Banach spaces]. Secondly, one notes that L(x)  is 
uniformly continuous on a finite interval [s, t]--then, there is N o such that 
(1 + ( ( t -  s ) / N ) L ( x ) )  for all x ~[s, t]  is a stochastic matrix whenever 
N /> N 0. From this and (*) then our assertion follows. 

We are now showing the following: 

(I) Let U c R" be an open set, with P, c U, and assume p ~  L(p) 
yields a stochastic generator for all p ~ U. Then, the assertion of Proposi- 
tion 4.1 is true. 

Proof  of  (0. Owing to the usual extension principle for solutions in a 
compact set (applied in forward direction to the boundary of the compact 
set) it is sufficient to show that p(0) ~ boundary of Pn implies p(t) ~ P~ for 
all t of a certain interval [0,1-], ~- > 0. In line with this, let p(0) ~ boundary 
of P, ,  and 0 <~ t -+p( t )  a local solution of (d/dt)p  = L(p)p to initial data 
p(0). There is 1- > 0 with p(t) E U for all t ~ [0,~-]. Then, (L(p(t)} t~[0,~l is a 
continuous family of stochastic generators, and by Lemma 4.1 

oo t 

r(t,o) id + ~. ( L ( p ( s , ) ) ( S l L ( p ( s 2 ) )  foo sin-' . . . .  L(p(Sm) )ds, "" ds m 
rn = 1 d O  ..tO 

is a stochastic matrix for all t ~ [0, r]. Since (d /d t )p( t )= L(p(t))p(t) for 
t ~< ~-, necessarily p(t) = T(t, 0)p(0), so p(t) E P, within [0, ~]. 

Proof  of  Proposit ion 4.1. Define for X ~ R ~ a perturbation of our 
stochastic generator L(p): L(p,2t) = L(p) + haM, where M is a stochastic 
generator with Mik 4 = 0 Vi, k. Then, for fixed X 4= 0, L(p, X) is in the set of 
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stochastic generators whenever p varies through the open set 

U(•) = {p ~ R~:  - L(P)i k < 2t2Mik, i ~ k; L(P)i i < -)k2Mii Vi} 

Further, we have P. C U. Let X :/: 0. By (I) there exists a uniquely deter- 
mined global solution 0 ~< t-->p(t,X) of (d/dt)p = L(p,X)p to initial data 
p(0) ~ P~, with p(t, X) ~ P. for all t E [0, m). Owing to limx_+0L(p, X) 
= L(p) by standard continuity argument we have for the local solution 
0 ~< t -~p( t )  of (d/dt)p = L(p)p to initial state p(0)E P.:  p ( t )=  limx~0p(t, 
X), so p(t) E P. in a certain interval. The standard extension principle for 
solutions then completes the proof. �9 

5. Q U A D R A T I C  S Y S T E M S  

In this part we want to illustrate all we have derived up to now by 
some special systems. 

We restrict our considerations to such vector fields v of class (E)  
which depend quadratically on the variables, at least so far v is considered 
in restriction to P, .  This means that p-~ L(p) should be an affine map on 
P, .  Therefore, L ( p ) =  L(~kPkek)= ~ k p k L ( e k ) = ~ k P k L k ,  with e 1 =(1 ,  
0 . . . . .  0) . . . . .  e n = (0 . . . .  ,0,  1) and {Lk}--a set of stochastic generators. 

From Proposition 4.1 we know that such quadratic equations are 
evolution equations in the state space. Suppose that Lkq -- 0 Vk, q > 0- -we 
can formulate the equivalent of Theorem 4.1. 

T h e o r e m  5.1. Let L 1 , . . . ,  Ln be stochastic generators with Lkq = 0 
for all k, q some fixed, strictly positive state. 

(i) Then, (d/dt)p = ~ =  lpkLkp is an evolution equation in the state 
space. Every solution which evolves in P, satisfies the q-relative H theorems 
and converges as t tends to infinity (+  m). 

(ii) If (~kLk)~j~O for all i , j ,  every solution which has strictly 
positive initial condition tends towards q. 

Proof. We have to show only part (ii). When we take into account 
that L~, 9/> 0 Vi vaj, Lk,ii ~< 0 Vi and in both cases for all k - - the  assertion 
follows from the following fact: 

Assume for any j ,  k there exists an index l such that Ll,jk ~ O. Then 
v(p) = 0 has exactly one strictly positive solution in P.:  p = q. 
We prove this assertion. 
Take 0 < X < 1 such that X < (1/maxlj,k]Ltjk[). Then, B(p) :=  1 + 

X~,kpkL k is a stochastic matrix for p E P, ,  and 

p > 0 ~ B ( p ) j k >  0 for all j ,  k (31) 
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We may apply a standard result from the theory of Markov chains (see, 
e.g., Refs. 9 and 12), saying that (31) implies B(p) to be ergodic for every 
P ~ Pn, strictly positive, i.e., limm_~B(p)mp " = limm~o~B(p)mp ' for all p', p" 
~ P n .  

Since Lkq = 0, we have B(p)q = q. Hence, taking p" = q we obtain 

limm B (p)mp,= q for all p' E P. (32) 

and for all p > 0. 
Assume v(p) = 0, p > 0. Then, L(p)p = 0, i.e., B(p)p = p. Thus, by (32) 

and due to p > 0, p = B(p)p = limmB(p)mp = q. [] 

Example  (B equations). Now, we can handle, e.g., the B equation (1) 
from Section 1. Assume (Aykl) satisfies (2), (3)�9 

Suppose B (k) -- (Bi~ k)) is defined by Bi~ k) := ~jA~jkl, and there is q > 0, 
q ~ Pn such that 

B(k)q = q for all k (33) 

We will refer to this condition as "mixing"  with respect to q. 

Proposition 5.1. A B equation with (2), (3) fulfilling the mixing 
condition (33) with respect to a strictly positive state q is an evolution 
equation in the state space. Every solution which starts with strictly positive 
initial state fulfils the q-relative H theorems and tends to q for t --~ ~ .  

Proos  Because of (2), (3), B (k) is stochastic for every k�9 If we define 
L(p) : =  ~,,kpk B(k )  -- 1 = ~ k P k ( B  (k) -- 1) = ~ k P k L k  (p  ~ P,), we see that 
L k is a stochastic generator obeying Lkq = 0 for all k due to B(k)q = q for 
all k. 

Then, (1) reads as ( d / d t ) p  = ~kPkLkp.  We show (~kLk) i t v~O for 
all i, l. 

In contradiction with this, we suppose that (i, l) exist, with ~kLk,iZ = O. 
Then, Lk�9 = 0 for all k (Lk'S are stochastic generators!). Hence, Bi~ k) 
= t~il 4" Lk,il = 6il for all k. Because of (2) we have Bi} k) = Bi (l), SO Bi G) 
-- 8it for all k. If i v a l, Bi(k 0 = 0 for all k, i.e., (B(t )q)  i = 0, which contradicts 
(33) If i = l ,  L k t / = O  for all k, so ~ z L k t = - - L k z l = 0 ,  i e ,  since L k t  

�9 , J k ' J  , �9 �9 , j  

O, j ~ l, Lk.j, = 0 Vj, Vk .  Therefore, B~ ) = 8fl + Lk,jZ = 8j, for all k. By 
symmetry (2),' B y  ) = 8jz for all k. If j = l, B y  ) = 0 for all k, which leads to 
the mentioned violation of (33) again. Therefore ( ~  kLk)iz V ~ 0 for all i, I. All 
these facts show that Theorem 5.1 is applicable, and the assertion follows. 

[] 

FtemarR. The transition probability per unit time that the system 
goes from state l to state i at time t is given by p(i;  l ) ( t ) =  ~kBi(k!)pk(t ), 
Then, we would say that the process is mixing, when c i = l i m r ~ p ( i ;  l)(t)  
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exists for all i, almost all initial states, and is independent of l. Suppose the 
"mixing" condition (33) holds for the state q > 0. We already know that in 
this case limt_~p(t ) = q for p(0) > 0. Then follows 

c i = lim p( i ;  l ) ( t )  = ~ Bi~Z)qk= qi 
t---~ oo k 

(for all initial states from the interior of Pn). So, the mixing behavior of the 
process follows from the condition "mixing." Of course, (33) is a restricting 
condition--but for every strictly positive state q there exist B equations 
fulfilling the q-relative H theorems ~ and suggesting applications in reac- 
tion kinetics, etc. 

6. CONCLUDING REMARKS 

The mixing condition for B equations or the condition L(p)q = 0 
Vp E R n for a vector field of class (E) guarantees that all state solutions 
(starting in the interior of Pn) fulfil the q-relative H theorems. 

A first step into a more general situation without these additional 
conditions--a situation which contains some of the known discrete velocity 
gases (e.g., Broadwell model(8~)--is the following: 

We have a vector field, all solutions of which are simultaneously 
solutions of (in general different) master equations. 

It is known that a trajectory in the state space, which is a solution of a 
master equation, is uniquely characterized by a hierarchy of generalized H 
theorems--a generalization of our notions in Section 1. 

Definition (generalized H theorems). We say that a trajectory 
(p(t))t~>0 in Pn satisfies the generalized H theorems if and only if for arbitrary 
natural m, for arbitrary instants of time t I . . . . .  tm, and all t/> 0, 

s~m)(p(t ,  + t) . . . . .  p( t  m + t)) := ~ f ( p i ( t l  + t) . . . . .  pi(tm + t)) 
i 

<~ s :m) (p ( t , )  . . . . .  p(tm)) 

:= ~ f ( p i ( t l )  . . . . .  p i ( t m ) )  
i 

for any function f in m variables (defined on R ~' ), which is simultaneously 
convex in the variables and homogeneous of degree 1. 

This fact helps us to answer the following question: What is the 
structure of the vector fields v the solutions of which fulfill these general- 
ized H theorems, i.e., the solutions of which are simultaneously solutions of 
(in general different!) master equations? 
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The result is (2) as follows: 

There exists a map p ~  L(p) from P, into the n • n-stochastic genera- 
tors with v(p) = L(p)p, p ~ Pn and L(p) is a constant of motion, i.e., 
L~(p(O)) = L~j(p(t)) Vi, j and for all t >/O, when p(t) is a solution with 
p(O) E pn. 

R e m a r k .  It is possible to formulate a certain reverse result (see 
Ref. 2). 
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APPENDIX A. SOME DEFINITIONS 

Definition A.1. A real n x n matrix A = (A~) will be called stochastic 
iff (i) Ay >/0 for all i , j ,  (ii) ~]/Ay = 1 for al l j .  

Definition A.2. A real n x n matrix L = (L0) will be called stochastic 
generator iff (i) LO/> 0, Vi :~j,  (ii) Lii < 0 Vi, (iii) ~ i L y  = 0 Vj. 

We remark that a stochastic generator is the generator of a semigroup 
of stochastic matrices. 

Definition A.3. A system of ordinary differential equations in R n will 
be called master equation, when it has the following structure: 

( d / d t ) p  = Lp  

where L is a stochastic generator. With a stochastic matrix A = (A,2) a 
master equation can be written (possibly only after absorbing a positive 
muliplicative constant in t): 

( d / d t ) p  = A p  - p 

This notion generalizes somewhat Pauli's master equation. (2) 
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